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a b s t r a c t

Convolutional neural network (CNN) models have recently demonstrated impressive performance in
medical image analysis. However, there is no clear understanding of why they perform so well, or
what they have learned. In this paper, a three-dimensional convolutional neural network (3D-CNN) is
employed to classify brain MRI scans into two predefined groups. In addition, a genetic algorithm based
brain masking (GABM) method is proposed as a visualization technique that provides new insights into
the function of the 3D-CNN. The proposed GABM method consists of two main steps. In the first step,
a set of brain MRI scans is used to train the 3D-CNN. In the second step, a genetic algorithm (GA)
is applied to discover knowledgeable brain regions in the MRI scans. The knowledgeable regions are
those areas of the brain which the 3D-CNN has mostly used to extract important and discriminative
features from them. For applying GA on the brain MRI scans, a new chromosome encoding approach
is proposed. The proposed framework has been evaluated using ADNI (including 140 subjects for
Alzheimer’s disease classification) and ABIDE (including 1000 subjects for Autism classification) brain
MRI datasets. Experimental results show a 5-fold classification accuracy of 0.85 for the ADNI dataset
and 0.70 for the ABIDE dataset. The proposed GABM method has extracted 6 to 65 knowledgeable brain
regions in ADNI dataset (and 15 to 75 knowledgeable brain regions in ABIDE dataset). These regions
are interpreted as the segments of the brain which are mostly used by the 3D-CNN to extract features
for brain disease classification. Experimental results show that besides the model interpretability, the
proposed GABM method has increased final performance of the classification model in some cases
with respect to model parameters.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Deep learning models are composed of multiple processing
layers to learn representations of the data with multiple levels
of abstraction. These methods discover complicated structures
in large data sets. Thus, they have dramatically improved the
state-of-the-art in many fields of machine learning. Convolutional
neural networks (CNNs) are a kind of deep learning methods,
which have shown very good performance in processing im-
ages, video, speech and audio (LeCun, Bengio, & Hinton, 2015).
CNNs are a type of representation-learning methods which can
automatically identify the optimal representation from the row
data without requiring prior feature selection (called end-to-end)
(Vieira, Pinaya, & Mechelli, 2017). The end-to-end learning strat-
egy makes CNN representations a black box and except for the
final network output layer, it is difficult to understand the logic
of the CNN predictions hidden inside the network. Deep learning
algorithms, particularly CNNs, have rapidly became a methodol-
ogy of choice for analyzing medical images (Litjens et al., 2017).
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Deep learning models can be used for medical image classification
(Hosseini-Asl et al., 2018; Zhang et al., 2019), object detection
(de Vos, Wolterink, de Jong, Viergever, & Isgum, 2016; Yang
et al., 2015), segmentation (Çiçek, Abdulkadir, Lienkamp, Brox, &
Ronneberger, 2016; Lu et al., 2019), registration (Cheng, Zhang, &
Zheng, 2016; García et al., 2019), and other tasks (Anavi, Kogan,
Gelbart, Geva, & Greenspan, 2016; Liu, Tizhoosh, & Kofman, 2016).

Neuroimaging technology has widely been used in the study
of various brain diseases, such as autism spectrum disorder (ASD)
(Ecker et al., 2010; Khosla, Jamison, Kuceyeski, & Sabuncu, 2018),
Alzheimer (Liu, Li et al., 2018; Liu, Wang et al., 2017), and
schizophrenia (Liu, Li et al., 2017; Liu, Wang, Zhang et al., 2017).
In the recent years, there has been a growing trend in designing
neuroimaging-based diagnostic tools to automatically classify
patients from controls (Klöppel et al., 2012). In this regard, the
machine learning algorithms have been successfully employed
in the automated classification of magnetic resonance imaging
(MRI) data. MRI is a powerful, widely used and non-invasive tool,
which produces high quality 3D images of the brain structures
(Kong et al., 2018). One of the challenges of applying deep learn-
ing techniques to the neuro imaging data is related to this new
3D data format (3D volumes). In comparison with the designed
models for 2D data, these 3D models need a large amount of
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parameters. Prasoon et al. (2013) circumvented this problem by
dividing the 3D volumes into 2D slices which are fed as different
streams to a 2D network. Due to the 3D format of medical data,
a full 3D CNN model (instead of 2D) can be used to classify
patients vs. normal controls (NC) (Hosseini-Asl et al., 2018; Payan
& Montana, 2015).

In addition to perform an accurate classification, interpreting
and visualizing CNNs are important tasks to increase trust in
automatic classification systems (Rieke, Eitel, Weygandt, Haynes,
& Ritter, 2018). By interpreting and visualizing a 3D-CNN model
which is trained using a number of MRI scans, the brain regions
with sufficiently large discrimination power can be highlighted.
These regions are those segments of the brain which are mostly
used by the 3D-CNN to extract important features for classifica-
tion task. In this paper, these regions are called knowledgeable
brain regions. Knowledgeable brain regions are those areas of
the brain which the 3D-CNN has mostly used to extract dis-
criminative features from them. These regions can be interpreted
as the most important brain regions in the classification task
under the study. Knowledgeable brain regions could be interested
for studying the diseases progress and monitoring the effect of
treatments.

In this paper, a 3D-CNN model is designed for classification
of brain MRI scans into two predefined groups (Patients vs. Nor-
mals). CNNs can identify the optimal representation from the row
data but they are a type of black box methods. For interpreting
the trained black box model, a novel genetic algorithm based
brain masking (GABM) method is proposed. Besides, a new chro-
mosome encoding technique is suggested for applying GA on the
brain MRI scans. This proposed framework can discover the brain
regions with sufficiently large discrimination power and report
them as knowledgeable brain regions in the disease under study.

The rest of this paper is organized as follows. Section 2 reviews
some state of the art methods. Section 3 explains our datasets
and preprocessing step, a 3D-CNN model for MRI data classi-
fication, and the details of the proposed GABM method (chro-
mosome encoding, fitness function, operators and parameters).
Section 4 consists of the experimental results and discussion.
Finally, Section 5 presents our conclusion.

2. Related works

Related works that are closely connected to this study are
divided into three parts: Alzheimer classification, Autism classi-
fication, and CNN visualization. In this section some state of the
art methods are reviewed for each part.

2.1. Alzheimer classification

The automatic classification of Alzheimer’s disease (AD) using
MRI data plays an important role in human health. Therefore,
many researchers employed image classification methods to per-
form AD diagnosis (Beheshti, Demirel, & Initiative, 2016; Khedher
et al., 2015; Long, Chen, Jiang, Zhang, & Initiative, 2017). In con-
trast to automatic feature extraction in deep learning approaches,
the mentioned works need to extract features manually. On the
other hand, many deep learning methods have been proposed to
perform AD classification using MRI data (Li et al., 2015; Liu, Pan
et al., 2018; Payan & Montana, 2015; Sarraf, DeSouza, Anderson,
& Tofighi, 2017). Similar to present paper, some studies applied
a 3D-CNN model on full brain structural MRI scans in order to
AD classification. Korolev, Safiullin, Belyaev, and Dodonova (2017)
applied a convolutional neural network for AD classification on
a subset of 111 MRI scans from ADNI dataset (including 50 AD
subjects and 61 NC subjects) and achieved an accuracy of 0.80.
Rieke et al. (2018) obtained an accuracy of 0.77 in classification of

969 MRI scans (475 AD, 494 NC) from 344 subjects (193 AD, 151
NC). Yang, Rangarajan, and Ranka (2018) applied a 3D-CNNmodel
on 103 brain MRI scans (47 AD and 56 NC) for AD classification.
Using a 3D-ResNet model and a 5-fold cross validation strategy,
they achieved an accuracy of 0.79.

2.2. Autism classification

Blumberg et al. (2013) reported 1 in 55 children aged 6–
17 years are identified as patients with autism spectrum disorder
(ASD). Thus, making an accurate diagnosis seems crucial for so-
cieties (Fein et al., 2013; Li, Karnath, & Xu, 2017). Many papers
worked on ASD classification using brain MRI data and machine
learning techniques (Bernas, Aldenkamp, & Zinger, 2018; Jung
et al., 2017; Plitt, Barnes, & Martin, 2015; Tejwani, Liska, You,
Reinen, & Das, 2017). They reported high classification accuracy,
but used small datasets and it is hard to utilize these methods on
other datasets. Dealing with large datasets, Sabuncu, Konukoglu,
and Initiative (2015) worked on 935 MRI scans from the ABIDE
dataset for ASD classification. They reported a classification accu-
racy of 0.60 under a 5-fold cross validation strategy. Monté-Rubio,
Falcón, Pomarol-Clotet, and Ashburner (2018) worked on 1102
MRI scans from the ABIDE dataset. They explored several feature
extraction methods and two types of classifiers for MRI classi-
fication. The maximum reported accuracy using a 5-fold cross
validation mode is 0.62. Dvornek, Ventola, Pelphrey, and Duncan
(2017) proposed a deep learning framework for ASD classification
using functional MRI (f-MRI) data. They used entire ABIDE dataset
and obtained a classification accuracy of 0.69. A methodology
for incorporating phenotypic data with f-MRI data into a single
deep learning framework has been proposed by Dvornek, Ventola,
and Duncan (2018) which shown an accuracy of 0.70. Heinsfeld,
Franco, Craddock, Buchweitz, and Meneguzzi (2018) applied a
deep learning model to 964 f-MRI scans and achieved an accuracy
of 0.70. Li, Parikh, and He (2018) applied deep learning on brain
functional connectomes for ASD classification and achieved an
accuracy of 0.70 by developing a deep transfer learning neural
network framework.

2.3. CNN visualization

In the recent years, a growing number of researchers have
realized that the CNNs model interpretability is an important
issue and they have developed models with interpretable knowl-
edge representation (Ventura, Masip, & Lapedriza, 2017; Zhang,
Cao, Shi, Wu, & Zhu, 2017; Zhang & Zhu, 2018). One strategy for
understanding and visualizing CNNs is to show the activations of
the network during the forward pass. This is the most straight-
forward visualization technique. The second common approach
is visualizing the network weights. Another technique is retriev-
ing images that maximally activate a neuron. This technique
needs taking a large dataset of images, feed them through the
network and keep track of which images maximally activate
some neurons. Then the images should be visualized to get an
understanding of what the neuron is looking for in its recep-
tive field (Girshick, Donahue, Darrell, & Malik, 2014). Another
interesting method for understanding CNNs is occluding parts
of the images. For investigating those parts of the image that a
classification prediction is coming from, the probability of the
class of interest should be plotted (as a function of the position
of occluded part). This process is repeated over all regions of
the image while looking at the probability of each class. Finally,
each class probability is visualized as a 2D heat map (Zeiler &
Fergus, 2014). This heat map shows important parts of the images
according to the classification problem. In some classification
domains, like hyperspectral image (HSI) classification (Wang, He,
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& Li, 2018) and scene classification in VHR remote sensing images
(Wang, Liu, Chanussot, & Li, 2018), the input data usually have a
great number of spectral bands or a very high spatial resolution.
Training a CNN and occluding input images or ignoring some
spectral bands, and keep track of those parts of the images or
spectral bands that maximally activate the neuron of the class
of interest, can help to understand what the network is looking
for. Focusing on these parts can help researchers to reduce neg-
ative effect of redundant areas and train models that are more
efficient in terms of accuracy and computational complexity. For
reducing the computational complexity, Wang, Liu, et al. (2018)
applied an attention mask on intermediate data, after a set of
convolution layers. This structure discarded non-critical infor-
mation, improved the classification performance, and reduced
the computational complexity at the same time. Visualizing a
CNN model using image parts occluding approaches, can also be
applied in 3D spaces. Huang et al. (2018) used subsets of video
frames as 3D data for training a 3D-CNN model for dynamic scene
classification. In this method, a given video is split into 16-frame
long clips with a 15-frame overlap between two consecutive clips.
Visualizing their network using a 3D image occluding approach
can be useful to discover more interesting frames or more im-
portant areas of these frames. For interpreting and visualizing a
3D-CNN model trained by MRI data, Yang et al. (2018) proposed
a segmentation based occlusion approach for sensitivity analysis
of 3D-CNNs, which can identify the important brain regions in-
volved in AD classification at different levels. A 3D-CNN model
has been proposed to detect AD using brain structural MRI scans
by Rieke et al. (2018). They introduced a brain area occlusion-
based visualization method to highlight relevant brain areas in
the input image. These papers explained the CNN decision for one
specific sample at time. Furthermore, because of occluding one
brain region at time, the correlations and interactions between
brain regions may be ignored. The present paper purposes a
new CNN visualization technique to discover important brain
regions (knowledgeable brain regions) in a particular brain MRI
classification task. This is done using a combination of an atlas
based brain region occluding method and a genetic algorithm
feature selection method (with a new chromosome encoding
scheme). The proposed method explains the 3D-CNN decision
for all training samples at time. Moreover, because of the nature
of GA-based feature (region) selection methods the correlations
between brain regions will be considered.

3. Material and methods

An overview of the proposed framework is summarized in
Fig. 1. It consists of four major steps: (1) preprocessing, (2) classi-
fication, (3) genetic algorithm based brain masking (identification
of knowledgeable brain regions), and (4) experimental results.
The steps 1, 2, and 3 are described in the present section and step
4 is described in the next section.

3.1. Data and preprocessing

The Autism Brain Imaging Data Exchange I (ABIDE I) involved
17 international sites, sharing previously collected 1112 (MRI and
fMRI) scans, including 539 individuals with ASD and 573 nor-
mal control subjects (ages 7–64 years, median 14.7 years across
groups). Here, only the MRI scans collected from 1000 individuals
(500 ASD and 500 NC) are used to evaluate our proposed method.
For more details with the ABIDE I, please see http://fcon_1000.
projects.nitrc.org/indi/abide/.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a
longitudinal multisite observational study of normal control, mild
cognitive impairment (MCI), and Alzheimer’s disease (AD) (Jack
et al., 2008). ADNI researchers collect, validate and utilize data,
including MRI and PET images, genetics, cognitive tests, CSF and
blood biomarkers as predictors of the disease. In this paper,
a set of 140 MRI scans (70 NC and 70 AD) has been down-
loaded from ADNI site (http://adni.loni.usc.edu/) and is used in
our experiments.

All MRI scans are preprocessed using FSL software (https://fsl.
fmrib.ox.ac.uk/fsl/fslwiki). All scans are registered to
MNI152_T1_2_mm standard space. After normalization, all MRI
scans will have a size of 91 × 109 × 91 voxels. The scans
are cropped to an 80×80×80 voxels sub-volume with the brain
centered. This reduces the empty slices with non-valuable infor-
mation from the margins.

3.2. Classification using 3D-CNN

In machine learning, a CNN is a class of deep learning generally
for image analysis. The CNN models are based on the artificial
neural networks. These models can automatically identify the
optimal representation from the row data without requiring prior
feature selection (Vieira et al., 2017). In this paper, a 3D-CNN
model is designed and trained using a number of MRI scans. Then,
the trained model is employed to predict the class label of a given
MRI scan (‘‘Patient’’ or ‘‘Normal’’). The results show the efficiency
of the proposed architecture on different brain MRI datasets.
The process of building our 3D-CNN model involves these major
steps: convolution, rectified linear unit (ReLU), pooling, dropout,
flattening and fully connection (with sigmoid activation function).
An overall view of the proposed 3D-CNN architecture for MRI
classification is shown in Fig. 2.

3.3. Genetic algorithm based brain masking

In the first step of the proposed genetic algorithm based brain
masking (GABM) method, 96 predefined brain regions are ex-
tracted from Harvard– Oxford cortical and subcortical structural
atlas (see Section 3.3.1). These regions can be used as a mask
to select the voxels inside them. Also, a mask can be generated
using more than one brain region. Different subsets of the regions
give different brain masks and have different effect on the sys-
tem output. Analyzing the classifier output, by occluding some
portions of the input scans using generated masks, reveals which
regions of the brain are important for classification. As a result,
the regions in the mask with best performance can be considered
as knowledgeable brain regions. For Harvard–Oxford atlas with
96 predefined brain regions, there exist 296 subsets of the regions.
Thus, finding a subset of brain regions with sufficiently large
discrimination power leads to a very large search space. Genetic
algorithm (GA) is very effective in solving large scale problems
and can be used to find an optimal (or near optimal) solution. GA
starts with random population of trial solutions called individuals
or chromosomes. In this paper, each individual would represent
a brain mask which contains a subset of predefined brain re-
gions. Normally, the quality of each individual is evaluated using
a fitness function with respect to some measures of interest.
Finally, GA finds the optimal solution through repetitive appli-
cation of genetic operations on the chromosomes. More detailed
descriptions of the proposed GA components are explained in
next subsections. Fig. 3 demonstrates the overall diagram of the
proposed GABM method.

http://fcon_1000.projects.nitrc.org/indi/abide/
http://fcon_1000.projects.nitrc.org/indi/abide/
http://fcon_1000.projects.nitrc.org/indi/abide/
http://adni.loni.usc.edu/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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Fig. 1. Overview of the proposed framework.

Fig. 2. The proposed 3D-CNN architecture for MRI classification.

3.3.1. Brain regions extraction
In the evaluation step of the proposed GABM method, we

analyze the contribution of a subset of brain regions in the classi-
fication performance. In this regard, the MRI scans are parcellated
into 96 predefined brain regions using Harvard– Oxford cortical
and subcortical structural atlas. All predefined brain regions are
extracted from the mentioned atlas (with threshold= 0) and they
are stored in 3D matrices in the same size as the input scans.

These 3D data or a subset of them can be used as brain masks
to select the voxels inside them. The predefined brain regions are
shown in Fig. 4. In this study, the knowledgeable brain regions
are discovered using a GA based brain masking process. First,
several brain masks are generated randomly and then will be
evaluated via a fitness function. Then, the best mask will be
optimized during GA generations. For applying a brain mask on
the MRI scans, an element-wise multiplication operator is used.
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Fig. 3. The overall diagram of the proposed GABM method.

Table 1 shows the predefined brain regions’ names and their
corresponding IDs. After chromosome encoding, the ID field will
be equal to the brain region location in the chromosome.

3.3.2. Chromosome encoding
In this paper, a new chromosome encoding scheme is pro-

posed to discover knowledgeable brain regions in a particular
MRI classification problem. Each chromosome in the population
represents a candidate solution or a brain mask. If m is the total
number of the brain regions (here, m = 96), each chromosome
is represented by a vector of dimension m. Instead of using a bi-
nary representation, which is the simplest chromosome encoding
scheme, we define a chromosome as a vector of integer values
picked from 0, 1, 2, or 3. These values are known as genes. In this
paper, when a gene value is ‘‘0’’ its corresponding brain region
is not selected to generate the brain mask. If a gene value is ‘‘1’’

Table 1
Data structure including ID and Name of all predefined regions.
ID Name

1 Left Angular Gyrus
2 Left Central Opercular Cortex
3 Left Cingulate Gyrus, anterior division
. . . . . .
47 Left Temporal Occipital Fusiform Cortex
48 Left Temporal Pole
49 Right Angular Gyrus
50 Right Central Opercular Cortex
. . . . . .
94 Right Temporal Fusiform Cortex, posterior division
95 Right Temporal Occipital Fusiform Cortex
96 Right Temporal Pole
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Fig. 4. All brain regions masks extracted from the Harvard–Oxford cortical and subcortical structural atlases.

its corresponding brain region is selected in its original shape. If a
gene value is equal to ‘‘2’’ its corresponding brain region is shrunk
by a morphological erosion operator. Erosion shrinks objects by
etching away their boundaries (Gonzalez & Woods, 2002). Finally,
if a gene’s value is equal to ‘‘3’’ its corresponding region is ex-
panded using a morphological dilation operator. Fig. 5 shows the
overall diagram of generating a random chromosome. Moreover,
an example of applying the binary morphological filters on a
particular brain region (Right Intracalcarine Cortex) is presented
in Fig. 5. As can be seen the morphological erosion operator
causes to exclude partial volume edges from the mask. Also, using
the morphological dilation operator the mask will include outer
area of the edges. These operators’ behaviors are very similar
to changing threshold in the brain region extraction step. Using
this new chromosome encoding framework, the boundaries of the
predefined brain regions can be explored more accurately. This
step can be interpreted as a local search step for the GA to find
more optimal solutions.

3.3.3. Initial population
The first step of GA is generating an initial population ran-

domly. In this study, each chromosome is created by randomly
chosen values from set {0, 1, 2, 3}. In the population initialization
step (also in the mutation step), the values are assigned to the
genes using a predefined probability according to Eq. (1). For any
particular gene G, a random real number R is generated in the
range of (0, 1). Then, a value V is assigned to the gene G as
follows:

V =

⎧⎪⎪⎨⎪⎪⎩
0 if 0 ≤ R < 0.1,
1 if 0.1 ≤ R < 0.4,
2 if 0.4 ≤ R < 0.7,
3 if 0.7 ≤ R < 1

(1)

This probability confirms that the algorithm will select about
90% of the predefined brain regions for generation (and also
mutation) of brain masks. Finally, it should be noted that the
number of chromosomes in the initial population is an important

issue for GA performance. A large population size leads to more
genetic diversity but suffers from slower convergence. A very
small population explores only a reduced part of the search
space and it may converge to a local optima. This paper uses
200 individuals for initial population. Fig. 6 shows a randomly
generated individual and its related brain mask.

3.3.4. Fitness function
In GA based approaches, fitness functions are used to eval-

uate the quality of the individuals. In this paper, an individual
represents a brain mask and its quality is measured with respect
to the accuracy of the model on the masked MRI scans and the
inverse of the number of selected regions. Computing the fitness
value of a chromosome contains two main steps. First, a 3D brain
mask should be generated using the chromosome string. Next,
the generated mask is applied on all input scans and the model
accuracy will be calculated. Finally, the fitness value should be
calculated using a weighted sum of the model accuracy and the
inverse of the number of selected brain regions. By applying
a mask on the brain MRI scans (in a voxel-wise multiplication
mode), some regions will be suppressed and the other regions
will be used for classification. As mentioned, a brain MRI scan
is parcellated into 96 predefined regions. Thus, for a particular
chromosome CH with 96 genes, the corresponding brain mask is
generated as follows:

Msk = Zeros_like(MRIscans) (2)

where, we define an empty (initialized with zero) matrix MSK in
the same size as the input MRI scans. MSK will be used to collect
all selected brain regions into a single mask.

if CHi > 0 then, Msk = Logical.OR (Msk,MF (BRMi)) .

for i = 1..96 (3)

where, MF is a function which applies a morphological filter
on a 3D brain region mask based on its corresponding gene’s
value (only for CH i > 1). BRM is a set of 3D matrices containing
predefined brain regions extracted from the Harvard– Oxford
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Fig. 5. The overall diagram of generation a random chromosome.

atlas. The Logical-OR function gives logical-or of two 3D matrices
in a voxel-wise mode. This equation combines all selected brain
regions masks to form a unified 3D brain mask. After converting a
chromosome string to a brain mask, the classification accuracy of
the trained 3D-CNN model should be calculated for the occluded
versions of input scans. The classification accuracy is obtained
according to Eq. (4):

f1 =
Ncorrect

Ntotal
(4)

where, f1 denotes the classification accuracy, Ncorrect is the number
of correctly classified MRI scans and Ntotal is the total number of
MRI scans. Additionally, to calculating the fitness value of a brain
mask, we define a variable f2 which denotes the inverse of the
number of selected brain regions. Here, f2 can be calculated as
follows:

f2 =
1∑96

i=1 CHi > 0
(5)

Finally, the fitness value for a particular solution si is calcu-
lated as follows:

Fitval(si) = αf1 + βf2 (6)

where, α and β are weighting parameters to balance between
accuracy and the number of selected brain regions. Fig. 7 shows
the overall diagram of the proposed fitness function. we consider
α + β = 1 and investigate different values for them to achieve
different results. In this paper, GA is used to find an optimal brain
mask (best chromosome) with highest classification accuracy and
lowest number of selected regions. These regions can be inter-
preted as the most important brain regions in the classification
problem under the study.

3.3.5. Operators and parameters of genetic algorithm
Selection method: In this paper, the roulette wheel method is

used to select a number of individuals to be parents for later
breeding. In the roulette wheel selection method, the probability
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Fig. 6. A randomly generated chromosome and its corresponding brain masks.

Table 2
The parameters of the proposed 3D-CNN architecture.
Layer type Kernel size #Filters Scan size

Input —– —– 80×80×80×1
Dropout keep probability = 50% —– 80×80×80×1
Convolution 5×5×5 8 80×80×80×8
ReLU —– —– 80×80×80×8
Max Pooling 2×2×2 —– 40×40×40×8
Convolution 3×3×3 16 40×40×40×16
ReLU —– —– 40×40×40×16
Max Pooling 2×2×2 —– 20×20×20×16
Convolution 3×3×3 32 20×20×20×32
ReLU —– —– 20×20×20×32
Max Pooling 2×2×2 —– 10×10×10×32
Flattening —– —– 1×32000
Fully connected 32000×1024 —– 1×1024
Dropout keep probability = 50% —– 1×1024
Fully connected 1024×2 —– 1×2
Softmax Layer —– —– 1×2
Classification Layer —– —– Patient vs. Normal

of selecting an individual si is given by:

P(si) =
F (si)∑n
j=1 F (sj)

(7)

where, F (s) is the fitness value of the individual s, and n indicates
the number of the population. The probability of selecting an
individual is related to its own fitness and the fitness of the
other competing individuals in the population (Tan, Fu, Zhang, &
Bourgeois, 2008).

Crossover: A random single point crossover strategy is used to
generate new solutions. This needs a crossover point i which is
chosen randomly over the individuals’ length. A new offspring
will be created using first i genes of one parent and the remaining
genes of the other parent.

Mutation: In the mutation step, a new value is assigned to a
randomly chosen gene for all selected individuals. The new value
is generated based on our predefined probability map.

GA parameters: Finally, the other GA parameters have been
chosen as Population size: 200, Number of generations: 2000,
Probability of crossover: 0.4, and Probability of mutation: 0.6.

4. Experimental results and discussion

In this paper, a 3D-CNN model has been designed and trained
from the scratch. The input layer of this model has a size of

80×80×80 to accept preprocessed MRI scans. This layer is fol-
lowed by a dropout layer with keep probability 50% to reduce
over fitting. The first convolutional layer consists of 8 filters
with size 5×5×5. After applying a ReLU activation function to
the convolution’s results, a max-pooling operator is used with
window size 2×2×2. It reduces the input scan size to 40×40×40.
The second convolutional layer has 16 filters with size 3×3×3.
After applying Relu function and max-pooling operator, the data
size is reduced to 20×20×20. The third convolutional layer has
32 filters with size 3×3×3. After applying Relu and pooling on
the results, the data size is reduced to 10×10×10. Subsequently,
two fully connected (FC) layers are used for data classification.
The first FC layer has 32000 input and 1024 output neurons. This
FC layer is followed by a dropout layer with keep probability
50%. The second FC layer has 1024 input and 2 output neurons
(same as the number of classes). Finally, a softmax layer and a
classification layer are used to provide labels for the input MRI
scans. We trained this model with a cross-entropy loss function
and the Adadelta optimizer (learning rate 0.05, decay rate 0.95,
batch size 32 for ADNI and 64 for ABIDE, and 30000 iterations).
All of the network parameters have been summarized in Table 2.
The proposed 3D-CNN model has been evaluated using two dif-
ferent brain MRI datasets. In a 5-fold cross validation mode, the
classification accuracy for the ADNI dataset was 0.85 and for the
ABIDE dataset was 0.70. Fig. 8 shows the training accuracy during
3D-CNN optimization (average of all folds).
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Fig. 7. The overall diagram of the proposed fitness function.

For identification of knowledgeable brain regions using the
proposed GABM method, different values for α and β were in-
vestigated and different results have been achieved. The results
of 4 different experiments are reported for both datasets. In the
first experiment using the ADNI dataset, model parameters were
selected as α = 0.99 and β = 0.01. Any change in these
parameters will affect the number of involved brain regions in the
final mask. In all generations of the GABMmethod, best individual
is applied on training data. Fig. 9 shows the classification accuracy

(using best individuals) and the numbers of selected brain regions
during 2000 GABM generations in some experiments (average
over all folds). Fig. 9(b) shows the results of first experiment
which has α = 0.99 and β = 0.01. After GABM optimization,
the classification accuracy using final brain mask (final best in-
dividual), was about 1.00 on the training data and 0.80 on the
test data. These results have been achieved using 65 brain regions
which can be reported as knowledgeable brain regions. This can
be mentioned by removing 31 brain regions (about 1/3 of whole
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Fig. 8. Classification accuracy on training data during 3D-CNN training phase.

brain MRI scan) the accuracy on the training data still remains
1.00, but the accuracy on the test data was reduced to 0.80. As can
be seen in Fig. 8(b), during GABM generations the classification
accuracy is remains high, even when the number of selected brain
regions is decreasing. These results prove that some brain regions
do not have any effect on the classifier accuracy using the training
data. Therefore, these brain regions can be ignored.

In the second experiment using ADNI dataset, the GABM pa-
rameters were selected as α = 0.03 and β = 0.97. Fig. 9(c) shows
the results during 2000 generations of the GABM method. After
optimization, the classification accuracy for the final brain mask
was 0.96 on the training data and 0.85 on the test data. These
results achieved using about 41 brain regions which means by
removing 55 brain regions (more than half of all brain regions)
the accuracy on the training data was reduced to 0.96, but the
accuracy on the test data still remained the same (0.85). This
experiment proved by increasing the value of β , the number of
selected brain regions in the final mask will be decreased.

In the third experiment using ADNI dataset, the GABM pa-
rameters were selected as α = 0.025 and β = 0.975. After
2000 generations, the classification accuracy using final best so-
lution was about 0.92 for the training data and 0.83 for the test
data. These results have been achieved using 31 brain regions
(removing 65 brain regions that is about 2/3 of the whole brain
regions). Using the mentioned 31 brain regions, the accuracy on
both training and test data sets are acceptable.

In the last experiment using ADNI dataset, the GABM parame-
ters were selected as α = 0.02 and β = 0.98. The obtained results
during the GABM optimization process are shown in Fig. 9(d).
After finding an optimal brain mask, the accuracy on the training
data was about 0.75 and the accuracy on test data was about 0.63.
These results achieved using only 6 brain regions. These regions
can be interpreted as the most important brain regions in the
classification task under the study.

Fig. 10 shows the brain mask obtained in the last experiment
on ADNI dataset, its related chromosome, and the name of iden-
tified knowledgeable brain regions. The presented mask in Fig. 10
has been extracted using a majority voting on the best individuals
of the folds. This mask contains 4 brain regions in original size and

1 dilated brain region. As a result, the proposed GABM method
enables us to convert a 3D-CNN (a black box learning algorithm)
to a tool for finding knowledgeable brain regions related to a
particular brain MRI dataset.

Similarly, in the first experiment using the ABIDE dataset, the
GABM parameters were selected as α = 0.99 and β = 0.01. Using
the final brain mask, the accuracy on the training data was 0.94
and the accuracy on the test data was 0.70. These results have
been achieved using 75 brain regions.

In the second experiment using the ABIDE dataset, the GABM
parameters were selected as α = 0.03 and β = 0.97. In this
case, the classification accuracy on the training data was reduced
to 0.92, but the accuracy on the test data was increased to 0.73
(shows about 0.03 improvement). These results were achieved
using 62 brain regions.

In the third experiment using the ABIDE dataset, the GABM
parameters were selected as α = 0.025 and β = 0.975. The
classification accuracy using final brain masks was 0.89 for the
training data and 0.67 for the test data. These results achieved
using 53 brain regions.

In the last experiment using the ABIDE dataset, the GABM
parameters were selected as α = 0.02 and β = 0.98. Using
final brain mask, the accuracy on the training data was about 0.76
and the accuracy on the test data was about 0.61. Fig. 11 shows
obtained results in the last experiment on the ABIDE data. These
results have been achieved using only 15 brain regions. These
regions can be considered as the most important brain regions in
ASD classification using a 3D-CNN model and the ABIDE dataset.

Fig. 12 shows final brain mask (obtained from all folds in the
last experiment on the ABIDE dataset), its corresponding chromo-
some, and the regions’ names. This mask contains 5 brain regions
in original size, 3 dilated and 7 eroded regions. Here, the proposed
GABMmethod used a 3D-CNN model to find knowledgeable brain
regions for ASD classification using MRI data.

4.1. Discussion on classification accuracy

The results of all experiments are summarized in Table 3.
When the 3D-CNN model without GABM was used for classifi-
cation, all 96 predefined brain regions were involved for model



228 H. Shahamat and M. Saniee Abadeh / Neural Networks 126 (2020) 218–234

Fig. 9. Results on the ADNI dataset: (a) classification accuracy on training data during the 3D-CNN learning phase. In (b), (c), and (d) left column shows classification
accuracy on the masked training data using best solution, and right column shows the number of involved brain regions during GABM optimization. (b) for α = 0.99
and β = 0.01, (c) for α = 0.03 and β = 0.97, and (d) for α = 0.02 and β = 0.98.

training and testing. This method was evaluated using two brain
MRI datasets. The obtained accuracy was acceptable (0.85 for
ADNI and 0.70 for ABIDE) but we lost the ability of highlight-
ing knowledgeable brain regions. Similarly, using the 3D-CNN +
GABM method all brain regions were involved in model training,
but only a number of them have been selected by the proposed
method. The GABM method is similar to network pruning tech-
niques. The idea is that among many parameters in the network,
some are redundant and do not contribute considerably to the
output. Pruning is a promising way for eliminating parameters
based on a cost function. Generally, pruning is applied to reduce
computational costs (Molchanov, Tyree, Karras, Aila, & Kautz,
2016), but they can also be used to deal with over-fitting (Barbu,

She, Ding, & Gramajo, 2016; Bartoldson, Barbu, & Erlebacher,
2018).

In this paper, the proposed GABM method is applied to dis-
cover most important brain regions and discarding the redun-
dant part of the brain MRI scans according to the disease under
study. The test accuracy of 3D-CNN + GABM method on the
ADNI dataset, was 0.85 when α = 0.03 and β = 0.97. This
accuracy was obtained using only 41 brain regions, which is
equal to the obtained accuracy using all 96 brain regions. This
experiment proved that, some brain regions may be redundant
and the proposed GABM can find them properly. For the ABIDE
dataset, the best test accuracy was 0.73 for α = 0.03 and β =

0.97. This result shows that using the proposed GABM improves
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Fig. 10. The obtained mask, its corresponding chromosome, and the names of discovered knowledgeable brain regions from the ADNI dataset (‘‘↑’’ means dilation).

Fig. 11. Results on the ABIDE dataset: (a) classification accuracy on training data during the 3D-CNN learning phase. In (b) left column shows classification accuracy
on the masked training data using best solution, and right column shows the number of involved brain regions during GABM optimization, for α = 0.99 and β = 0.01.

the test accuracy about 0.03 by selecting only 62 brain regions. As
mentioned, the GABM method is similar to pruning methods. If
we carefully select the pruned parameters according to a suitable
measure, performance improvement may be occurred (He et al.,

2019). This is the main reason for accuracy improvement by the
proposed GABM method.

The comparison of the proposed method with a list of recent
works on ADNI and ABIDE datasets is presented in Table 4. For
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Fig. 12. The obtained mask, its corresponding chromosome, and names of discovered knowledgeable brain regions from the ABIDE dataset (‘‘↑’’ means dilation and
‘‘↓’’ means erosion).

Table 3
Summarized results of all experiments. Includes parameters values, number of selected regions and accuracy (using
5-fold cross validation) on train and test data.
Method Parameters ADNI ABIDE

α β # regions Train Test # regions Train Test

3D-CNN —– —– 96 1.00 0.85 96 0.93 0.70
3D-CNN + GABM 0.99 0.01 65 1.00 0.80 75 0.94 0.70
3D-CNN + GABM 0.03 0.97 41 0.96 0.85 62 0.92 0.73
3D-CNN + GABM 0.025 0.975 31 0.92 0.83 53 0.89 0.67
3D-CNN + GABM 0.02 0.98 6 0.75 0.63 15 0.76 0.61

ADNI dataset, three studies have been reported which applied a
3D-CNN model on full MRI scans. Besides, for ABIDE dataset we
just reported a set of papers which worked on a large sample
size. The classification accuracy for each dataset is reported in

two cases, for the 3D-CNN model alone, and for the combination
of 3D-CNN and GABM method (3D-CNN + GABM). According to
this table, the proposed method outperforms other approaches
in terms of accuracy. For ADNI dataset, the classification accuracy
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Table 4
Comparison of the proposed method with a list of previous research with the data and the performances obtained. CC stands for
Computational Complexity.
Reference Method Modal CC # Subject Accuracy

Alzheimer Classification
Korolev et al. (2017) 3D-CNN MRI O(n5) 111 0.80
Rieke et al. (2018) 3D-CNN (5-fold) MRI O(n5) 969 0.77
Yang et al. (2018) 3D-CNN (5-fold) MRI O(n5) 103 0.79
Proposed Method 3D-CNN (5-fold) MRI O(n5) 140 0.85
Proposed Method 3D-CNN + GABM (5-fold) MRI O(n6) 140 0.85

Autism Classification
Sabuncu et al. (2015) MVPA (5-fold) MRI O(n4) 935 0.60
Monté-Rubio et al. (2018) SVM + Bayesian (5-fold) MRI O(n4) 1102 0.62
Dvornek et al. (2017) Deep Learning (10-fold) R-fMRI O(n6) 1100 0.68
Dvornek et al. (2018) Deep Learning (10-fold) R-fMRI O(n6) 1100 0.70
Heinsfeld et al. (2018) Deep Learning (10-fold) R-fMRI O(n6) 964 0.70
Li et al. (2018) Deep Learning (5-fold) R-fMRI O(n6) 1100 0.70
Proposed Method 3D-CNN (5-fold) MRI O(n5) 1000 0.70
Proposed Method 3D-CNN + GABM (5-fold) MRI O(n6) 1000 0.73

using all brain regions is equal to the classification accuracy using
only the knowledgeable brain regions. For ABIDE dataset the
classification accuracy of the proposed 3D-CNN is 0.70 and the
classification accuracy of 3D-CNN + GABM is 0.73, which shows
about 0.03 improvement.

4.2. Discussion on computational complexity

For analyzing the computational complexity of neural net-
works, it will be useful to separate the training and inference
phases, because we do not have back propagation in inference
phase which has a very high computational complexity. By fixing
an architecture of a neural network (underlying graph and ac-
tivation functions), each network is parameterized by a weight
vector w ∈ Rd. The computational complexity of a network is
highly dependent on the number of its weights. In CNN models,
the fully connected layers typically contain more than 90% of
the CNN weights (Shen, Ferdman, & Milder, 2017). For a fully
connected network, the computational complexity of forward
pass is of order O(n4) and the computational complexity of back
propagation is of order O(n5) (Zhang & Leatham, 2019). Table 4
shows the computational complexity of the proposed methods
in comparison with other state of the art methods. According
to this table, we can see that the computational complexity of
the proposed GABM method is O(n6) which has been obtained
according to the fact that the trained 3D-CNN should be employed
(with the order O(n4)) within the second internal loop of the
fitness function calculation of the presented GA. Table 4 confirms
that the proposed methods in this paper are not only more
accurate and explainable (capable of discovering knowledgeable
brain regions), but also computationally competitive compared to
several state of the art methods.

4.3. Discussion on discovered knowledgeable brain regions

In order to validate the discovered knowledgeable brain re-
gions, recent papers have been investigated in both Alzheimer
and Autism research fields. In Alzheimer domain, 5 knowledge-
able brain regions have been discovered by the proposed GABM
method (see Fig. 10). Several papers also reported the high im-
portance of these discovered brain regions in Alzheimer disease
analysis (see Table 5). Wang, Wilson, and Hancock (2017) re-
ported top 10 regions of interest (ROIs) with significant differ-
ences between AD patients and normal cases. These ROIs in-
clude the Left Temporal Fusiform Cortex and the Middle Temporal
Gyrus, which have been also discovered by the proposed GABM
method. These results are consistent with previous studies (Khaz-
aee, Ebrahimzadeh, Babajani-Feremi, & Initiative, 2017; Rubinov

& Sporns, 2010) which suggested that the Middle Temporal Gyrus
is an important region in AD pathology. Dillen et al. (2016)
reported prominent group differences localized in the Left Lateral
Occipital Cortex for AD cases, healthy subjects and SCI patients.
Similarly, Right Cuneal Cortex and Right Middle Frontal Gyrus have
been reported as important brain regions for AD diagnosis in
(Hafkemeijer et al., 2015) and (Guo et al., 2016; Jung et al., 2017),
respectively.

In Autism domain, the proposed GABM method has discovered
15 knowledgeable brain regions. All of these regions were previ-
ously studied by other researchers to discover their involvement
in ASD. Mengotti et al. (2011) reported that compared to normal
children, individuals with ASD had significantly increased white
matter volumes and decreased gray matter volumes in the left
Juxtapositional Lobule Cortex (supplementary motor area). They
also reported that children with autism compared to normally
developing subjects had significantly increased in gray matter
volumes in the Right Inferior Temporal Gyrus. Goddard, Swaab,
Rombouts, and van Rijn (2016) reported significant gray matter
volume differences between normal, ASD, and Klinefelter syn-
drome groups in the Left Insular Cortex. Furthermore, the effects
of ASD on the Right Inferior Temporal Gyrus, Left Juxtapositional
Lobule Cortex, Left Parahippocampal Gyrus, Right Occipital Pole, and
Right Temporal Fusiform Cortex are studied by (Alvarez-Jimenez,
Múnera-Garzón, Zuluaga, Velasco, & Romero, 2019), which have
been also discovered by the proposed GABM method. Similarly,
other discovered knowledgeable brain regions for ASD were stud-
ied in this research field. The Left Lateral Occipital Cortex has
been studied by (Mueller et al., 2013), Left Parietal Operculum
Cortex by (Rosenblau, Kliemann, Dziobek, & Heekeren, 2017),
Left Temporal Pole by (Pua, Malpas, Bowden, & Seal, 2018), Right
Cingulate Gyrus by (Green et al., 2013), Right Frontal Pole by (Pua
et al., 2018), Right Insular Cortex by (Goddard et al., 2016), Right
Parietal Operculum Cortex by (Nickl-Jockschat et al., 2012), and
Right Precuneus Cortex by (Bonilha et al., 2008). The list of all
knowledgeable brain regions discovered by the proposed GABM
method, and the references which studied them are provided in
Table 5.

To discover more efficient brain regions using GABM method,
it is possible to use multiple brain atlases instead of a single
one. Several researchers reported that, by employing more than
one atlas for brain image analysis, an accuracy improvement
can be achieved (Alvén, Norlén, Enqvist, & Kahl, 2016; Iglesias
& Sabuncu, 2015; Sun, Shao, Wang, Zhang, & Liu, 2019). When
multiple brain atlases are used in a given model, establishing a
reliable fusion method is of great importance in giving accurate
results (Yang, Jia, & Yang, 2019). Using multiple atlases inside
GABM method would be an interesting idea. The majority voting
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Table 5
List of related works, which have been previously studied, the discovered knowledgeable brain regions.
Region ID Region name Reference

Alzheimer Classification
19 Left Lateral Occipital Cortex McLachlan et al. (2018)

Dillen et al. (2016)
Hafkemeijer et al. (2015)

46 Left Temporal Fusiform Cortex Wang et al. (2017)
Irish et al. (2016)

53 Right Cuneal Cortex Hafkemeijer et al. (2015)
70 Right Middle Frontal Gyrus Ortiz et al. (2017)

Guo et al. (2016)
72 Right Middle Temporal Gyrus Liu et al. (2018)

Wang et al. (2017)
Autism Classification
16 Left Insular Cortex Goddard et al. (2016)
18 Left Juxtapositional Lobule Cortex Alvarez-Jimenez et al. (2019)

Mengotti et al. (2011)
19 Left Lateral Occipital Cortex Mueller et al. (2013)
29 Left Parahippocampal Gyrus, anterior division Alvarez-Jimenez et al. (2019)
30 Left Parahippocampal Gyrus, posterior division Alvarez-Jimenez et al. (2019)
31 Left Parietal Operculum Cortex Rosenblau et al. (2017)
48 Left Temporal Pole Boddaert et al. (2009)
52 Right Cingulate Gyrus Green et al. (2013)
57 Right Frontal Pole Pua et al. (2018)
63 Right Inferior Temporal Gyrus Alvarez-Jimenez et al. (2019)

Mengotti et al. (2011)
64 Right Insular Cortex Goddard et al. (2016)
75 Right Occipital Pole Alvarez-Jimenez et al. (2019)
79 Right Parietal Operculum Cortex Nickl-Jockschat et al. (2012)
84 Right Precuneus Cortex Bonilha et al. (2008)
94 Right Temporal Fusiform Cortex Alvarez-Jimenez et al. (2019)

method, union or intersection of different brain masks obtained
by different brain atlases, are the most straightforward fusion
methods, which can be used in multi atlas version of GABM
method.

5. Conclusion

This paper proposed a 3D-CNN model to classify brain MRI
scans into predefined groups. Furthermore, a GABM method was
proposed as a visualization technique which gives insights into
the function of the classifier. First, a set of preprocessed MRI
scans have been used to train the proposed 3D-CNN. Then, a
GA based method was introduced to discover knowledgeable
regions of the brain. The knowledgeable regions are those areas
of the brain which are important for classification. The proposed
method was evaluated using two brain MRI datasets. The ob-
tained classification accuracy was 0.85 for the ADNI dataset and
0.70 for the ABIDE dataset. Finally, the proposed GABM method
has found 6 to 65 brain regions in ADNI dataset and 15 to 75 brain
regions in ABIDE dataset with respect to the model parameters.
The results shown that besides the model interpretability, the
proposed GABM method has increased the final performance of
the classifier in some cases.

As future works, we can aim to use multiple brain atlases
rather than a single one to identify the knowledgeable brain
regions. Also, the brain masks obtained by different brain atlases
can be combined to achieve better results. Other significant point
of the proposed GABM method is that it can be applied on other
neuroimaging data (e.g. f-MRI data or multimodal data).
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